The Trigonometric Parallax and Proper Motion of Barnard's Star

Error and Precision in Small-Telescope Astrometry

Richard Berry May 25, 2011 SAS 2011 @ Big Bear, CA

Error and Precision in Small-Telescope Astrometry

- Introduction
- Barnard's Star
- Astrometry Workflow
- Sources of Error
- Extrinsic
 - Optics
 - Image Capture
 - Image Measurement
 - Reference Star Properties
 - Astrometric Solution
- Results for Barnard's Star

Introduction

History
Instrumentation
Observations
Accuracy and Precision

History

Began as a student project question...
Is it possible to detect the proper motion of Barnard's Star in a three-night workshop?
Answer: Possible in a single night!
Analysis of data taken 2009-2010
On-going project...

Instrumentation

Alpaca Meadows Observatory (-122.6,+44.8)

- 8-inch f/4 Newtonian (Vixen R200SS)
- TeleVue ParaCorr coma corrector
- QSI 532ws CCD camera
- Schüler B, V, Rc, Ic, clear filters

Pine Mountain Observatory (-120.9,+43.8)

- Celestron 11-inch *f*/10 EdgeHD
- Same CCD camera and filters

Observations

20 nights 11 nights in 2009, experimenting 9 nights in 2010, focused on data collection 836 useable images 2009: BVRI, VR, and V filters, 10 to 60 sec Between 14 and 92 images per night 2010: V filter only, 20, 40, and 60 sec

Usually 60 images per night

Accuracy & Precision

Meas = True + Syst ± Rand

We call Meas "accurate" when it satisfies:

Syst << Meas and Syst < Rand and Meas ≅ True

We call Meas "precise" when it satisfies:

Rand << Meas and Rand < Syst

True = true value Meas = measured value Syst = systematic error, or bias Rand = random error, or uncertainty

Barnard's Star

Star Field
Properties
Proper Motion
Trigonometric Parallax

Barnard's Star Field in V

Barnard's Star Field (BVR color)

B–V <u>Star</u> BS +1.3 R1 -0.1 R2 +0.8 R10 R3 +0.5 R11 R4 +0.2 R5 +1.0R6 +0.8 R7 -0.0 R9 R8 +0.8 R9 +0.3 R8 R2 R4 R10 +0.7 BS R11 +0.8 **R**5 **R**3 0 R1 **R**7 •) R6

Properties

- Barnard's Star = BD+4°3561 = TYC 425-2502
- Location: Ophiuchus
- Coordinates: 17^h57^m48.5 +4^o41'36" (J2000)
- Apparent Magnitude: V = 9.54 (variable)
- Spectral Class: M4V (red dwarf)
- $T_{eff} = 3100 \pm 100$
- Proper Motion: 10.33777 arc-seconds/year
- Parallax: 0.5454 arc-seconds
- Distance: 5.980±0.003 light-years
- Radial Velocity: -110.6 km/second
- Rotation Period: 130.4 days

5.980 light-years

Trigonometric Parallax

1091 mas

Proper Motion, Parallax, and the Path of Barnard's Star

Astrometry Workflow

Optical System
Image Capture
Image Measurement
Reference Star Data
Astrometric Solution

Idealized Projection

Idealized Telescope

 $r = F \tan(\theta)$

Image Capture / Image Measurement

• How accurately can we determine the (x, y) location of the star?

• What is the relationship between location accuracy and brightness?

Reference Stars: $(a, \delta) \rightarrow (X, Y)$

- When you shoot an image, you're mapping the celestial spherical onto a plane surface.
- This occurs for all the stars in the image, both the target stars and the reference stars.
- The standard (X, Y) coordinates of a star at (a, δ) for an image centered on (a_0, δ_0) are:

 $X = (\cos \delta \sin(a - a_0))/d$

 $Y = (\sin \delta_0 \cos \delta \cos(a - a_0) - \cos \delta_0 \sin \delta)/d$

where $d = \cos \delta_0 \cos \delta \cos(a - a_0) + \sin \delta_0 \sin \delta$.

By offsetting, rotating, and scaling standard coordinates, we can link each reference star with its counterpart in the image.

$(X,Y) \rightarrow (X,Y)$

To offset, rotate, and scale coordinates:

- $X = x \cos \rho / F + y \sin \rho / F + x_{offset} / F$
- $Y = x \sin \rho / F + y \cos \rho / F + y_{offset} / F$
- But we do not know ρ, F, or the offsets.
- However, for each reference star, we know:
 - (X, Y) standard coordinates, and
 - (x,y) image coordinates.

Linking the Coordinates

- Suppose we have three reference stars.
- For each star, we know (x, y) and (X, Y).
 - $X_1 = ax_1 + by_1 + c$ and $Y_1 = dx_1 + dy_1 + f$
 - $X_2 = ax_2 + by_2 + c$ and $Y_2 = dx_2 + dy_2 + f$
 - $X_3 = ax_3 + by_3 + c$ and $Y_3 = dx_3 + dy_3 + f$.
- Three equations, three unknowns \rightarrow solvable.
- Suppose we have *many* reference stars.
- Solve by the method of least squares: errors are $\varepsilon_{x,n}$ and $\varepsilon_{y,n}$.
 - $\varepsilon_{x,n} = ax_n + by_n + c X_n$ and $\varepsilon_{y,n} = dx_n + dy_n + f Y_n$
- The residual, σ , expresses the error in the fit.

Computing Target Coordinates

- From reference stars, we find *a*, *b*, *c*, *d*, *e*, and *f*.
 The standard coordinates of the target are:
 - $X_{\text{target}} = aX_{\text{target}} + bY_{\text{target}} + c$, and
 - $Y_{\text{target}} = dx_{\text{target}} + ey_{\text{target}} + f$
- Given (X, Y) for the target, it's (a, δ) is:
 - $\delta = \arcsin((\sin\delta_0 + Y\cos\delta_0)/(\sqrt{1+X^2+Y^2}))$, and
 - $a = a_0 + \arctan(X/(\cos\delta_0 + Y \sin\delta_0)).$
- Results are expressed with the residual:
 - $a \pm \sigma_{\alpha}$
 - $\delta \pm \sigma_{\delta}$

Astrometric Data from Each Set of Images

	A	В	С	D	E	F	G	H	I I	J	K	L	M
1	AIP4Win	i v2.3.33 Magnitud	le Measureme	ent Tool									
2	Astrome	tric Coordinates in	n Text Format										
3	Referenc	e stars = 11											
4	Now = 10	0/8/2010 9:48:31 F	PM										
5	Seq#	Julian Day	Focal[mm]	PA[d.d]	X[pix]	Y[pix]	RA[d.d]	Dec[d.d]	RArms	DCrms	HH MM SS.ss	+DD MM SS.s	FileName
6	0	2455465.4719	911.0738	174.8909	1109.1150	724.255	269.449540	4.724217	0.145	0.092	17 57 47.89	+04 43 27.2	Barnstar-001-V60s.fit
7	1	2455465.4729	911.1903	174.9034	1110.3390	725.270	269.449559	4.724245	0.137	0.086	17 57 47.89	+04 43 27.3	Barnstar-002-V60s.fit
8	2	2455465.4738	911.0766	174.8860	1110.7570	725.883	269.449519	4.724284	0.118	0.048	17 57 47.88	+04 43 27.4	Barnstar-003-V60s.fit
9	3	2455465.4748	911.1803	174.8925	1111.6590	726.666	269.449526	4.724268	0.160	0.072	17 57 47.89	+04 43 27.4	Barnstar-004-V60s.fit
10	4	2455465.4758	911.2407	174.8792	1112.4750	726.338	269.449534	4.724249	0.101	0.083	17 57 47.89	+04 43 27.3	Barnstar-005-V60s.fit
11	5	2455465.4767	910.8706	174.8941	1113.0990	726.950	269.449537	4.724278	0.149	0.112	17 57 47.89	+04 43 27.4	Barnstar-006-V60s.fit
12	6	2455465.4777	910.8468	174.8869	1113.2640	726.589	269.449533	4.724270	0.144	0.086	17 57 47.89	+04 43 27.4	Barnstar-007-V60s.fit
13	7	2455465.4787	910.9625	174.8899	1114.2280	726.405	269.449547	4.724234	0.108	0.100	17 57 47.89	+04 43 27.2	Barnstar-008-V60s.fit
14	8	2455465.4796	920.5098	173.9535	1114.7880	726.566	269.449874	4.724502	4.913	3.134	17 57 47.97	+04 43 28.2	Barnstar-009-V60s.fit
15	9	2455465.4806	911.0141	174.8864	1115.2200	726.386	269.449559	4.724228	0.077	0.081	17 57 47.89	+04 43 27.2	Barnstar-010-V60s.fit
16	10	2455465.4816	911.1652	174.8776	1115.4930	726.321	269.449523	4.724258	0.154	0.109	17 57 47.89	+04 43 27.3	Barnstar-011-V60s.fit
17	11	2455465.4825	911.1594	174.8983	1115.6550	726.408	269.449525	4.724241	0.135	0.082	17 57 47.89	+04 43 27.3	Barnstar-012-V60s.fit
18	12	2455465.4835	910.9489	174.8854	1115.9300	726.182	269.449530	4.724245	0.108	0.112	17 57 47.89	+04 43 27.3	Barnstar-013-V60s.fit
19	13	2455465.4845	910.8863	174.8830	1116.3670	726.080	269.449521	4.724284	0.119	0.098	17 57 47.89	+04 43 27.4	Barnstar-014-V60s.fit
20	14	2455465.4855	910.8912	174.8717	1116.3460	725.982	269.449526	4.724279	0.160	0.087	17 57 47.89	+04 43 27.4	Barnstar-015-V60s.fit
21	15	2455465.4864	911.0373	174.8802	1116.6080	726.036	269.449510	4.724277	0.099	0.109	17 57 47.88	+04 43 27.4	Barnstar-016-V60s.fit
22	16	2455465.4874	911.0205	174.8933	1116.8730	725.895	269.449500	4.724265	0.143	0.093	17 57 47.88	+04 43 27.4	Barnstar-017-V60s.fit
23	17	2455465.4884	911.1496	174.8793	1117.4670	725.950	269.449506	4.724290	0.134	0.025	17 57 47.88	+04 43 27.4	Barnstar-018-V60s.fit
24	18	2455465.4893	910.9007	174.8687	1117.2820	726.238	269.449525	4.724272	0.152	0.100	17 57 47.89	+04 43 27.4	Barnstar-019-V60s.fit
25	19	2455465.4903	911.0019	174.8688	1117.9900	726.291	269.449579	4.724262	0.130	0.037	17 57 47.90	+04 43 27.3	Barnstar-020-V60s.fit
26	20	2455465.4913	911.3158	174.8904	1117.8650	726.206	269.449553	4.724259	0.138	0.091	17 57 47.89	+04 43 27.3	Barnstar-021-V60s.fit
27	21	2455465.4922	910.8112	174.8790	1118.2040	726.087	269.449518	4.724286	0.152	0.093	17 57 47.88	+04 43 27.4	Barnstar-022-V60s.fit
28	22	2455465.4932	910.9561	174.8623	1118.4220	725.857	269.449516	4.724302	0.115	0.085	17 57 47.88	+04 43 27.5	Barnstar-023-V60s.fit
29	23	2455465.4942	911.1515	174.8843	1118.6280	725.246	269.449493	4.724287	0.151	0.097	17 57 47.88	+04 43 27.4	Barnstar-024-V60s.fit
30	24	2455465.4951	910.7821	174.8772	1119.1060	725.354	269.449541	4.724247	0.136	0.089	17 57 47.89	+04 43 27.3	Barnstar-025-V60s.fit
31	25	2455465.4961	910.8367	174.8403	1119.3980	725.095	269.449498	4.724294	0.142	0.089	17 57 47.88	+04 43 27.5	Barnstar-026-V60s.fit
32	26	2455465.4971	910.9794	174.8579	1119.2390	725.054	269.449512	4.724298	0.132	0.091	17 57 47.88	+04 43 27.5	Barnstar-027-V60s.fit
33	27	2455465.4980	911.0343	174.8766	1119.6120	724.681	269.449508	4.724280	0.100	0.076	17 57 47.88	+04 43 27.4	Barnstar-028-V60s.fit
34	28	2455465.4990	911.1055	174.9062	1120.0520	724.224	269.449503	4.724268	0.144	0.070	17 57 47.88	+04 43 27.4	Barnstar-029-V60s.fit
35	29	2455465.5000	911.0400	174.8752	1120.6640	724.107	269.449534	4.724269	0.141	0.114	17 57 47.89	+04 43 27.4	Barnstar-030-V60s.fit
36	30	2455465.5009	911.1117	174.8649	1120.3910	724.219	269.449534	4.724270	0.151	0.071	17 57 47.89	+04 43 27.4	Barnstar-031-V60s.fit
37	31	2455465.5019	910.9768	174.8785	1121.4030	724.389	269.449531	4.724254	0.094	0.121	17 57 47.89	+04 43 27.3	Barnstar-032-V60s.fit
38	32	2455465.5029	910.8195	174.8627	1121.0790	724.098	269.449534	4.724268	0.173	0.134	17 57 47.89	+04 43 27.4	Barnstar-033-V60s.fit
39	33	2455465.5038	910.9042	174.8599	1121.6070	723.931	269.449509	4.724293	0.136	0.089	17 57 47.88	+04 43 27.5	Barnstar-034-√60s.fit
40	34	2455465.5048	911.0821	174.8755	1121.8740	723.437	269.449559	4.724231	0.117	0.088	17 57 47.89	+04 43 27.2	Barnstar-035-V60s.fit

Sources of Error

Extrinsic Optics Image Capture Image Measurement Reference Star Properties Astrometric Solution

Astrometry: Potential Sources of Error 1

Extrinsic

- Proper motion of reference stars (displaced stars)
- Atmospheric refraction (displaced stars)

Optical System

- Failure of $r = F \cdot tan(\theta)$ mapping (displaced images)
- Lateral chromatic aberration (displaced images)

Image Capture

- Poor focus (centroid error)
- Bad tracking (centroiding asymmetric images)
- Calibration (images displaced by hot pixels)
- Time error (HA and zenith-distance errors)

Astrometry: Potential Sources of Error 2

- Target and Ref Star Measurement
 - Faint background stars (centroid errors)
 - Centroid extraction (incorrect centroid)
- Reference Star Properties
 - Position errors (skewed astrometric solution)
 - Proper motion errors (skewed astrometric solution)
 - Dispersion errors (skewed astrometric solution)
- Astrometric Solution
 - Reference star proper motions
 - Differential refraction errors
 - Incorrect coding of solution algorithm

Differential Atmospheric Refraction

- Atmospheric Refraction
 - *R* = (*n*-1) tan *z*
 - R is the angle of refraction
 - *n* is the refractive index of air
 - z is the zenith distance
- Differential Atmospheric Refraction
 - $\Delta R = (n(\lambda) n(\lambda_0)) \tan z$
 - Blue more strongly refracted than red
- Effective Wavelength of Observation
 - Slope of spectrum across bandwidth of filter
 - Barnard's Star displaced relative to bluer stars

mosphe	eric Parame	ters		Wavelengt	h Range -		A	irmass Ra	inge			eference W	avelength	
20.0	Temperat	ure (Celsius		350 Lambda Min [nm]				13	∠ ∆irmass Mir	airouro		550 Lambda Bef (nm)		
			»I					Aimass Minimum						
40	Relative Humidity as %		%	850 Lambda Max (nm)				4.0 Airmass Maximum				[
1000	Drassura I	leads and		50	Lambda Ci	tan [um]		0.100	Airmana Cha	-		Compute	Derauits	
1000	Flessule	(mbar)	-	1 30	Lambua Si	teb (uni)		0.100	Aimass ote	'nΡ		company	Save To Fil	
ecZD	ZD (deg)	350	40	0 450	500	550	600	650) 700	750	800	850		
.300	39.7	+1.379	+0.82	0 +0.449	+0.189	+0.000	-0.142	-0.252	2 -0.338	-0.408	-0.464	-0.511		
.400	44.4	+1.627	+0.96	7 +0.529	+0.223	+0.000	-0.168	-0.297	7 -0.399	-0.481	-0.548	-0.603		
. 500	48.2	+1.857	+1.10	4 +0.604	+0.255	+0.000	-0.191	-0.339	9 -0.455	-0.549	-0.625	-0.688		
.600	51.3	+2.074	+1.23	3 +0.675	+0.284	+0.000	-0.214	-0.379	9 -0.509	-0.613	-0.698	-0.768		
. 700	54.0	+2.283	+1.35	57 +0.743	+0.313	+0.000	-0.235	-0.417	-0.560	-0.675	-0.769	-0.846		
.800	56.3	+2.485	+1.47	7 +0.809	+0.341	+0.000	-0.256	-0.454	-0.610	-0.735	-0.837	-0.921		
.900	58.2	+2.683	+1.59	95 +0.873	+0.368	+0.000	-0.277	-0.490) -0.658	-0.793	-0.903	-0.994		
.000	60.0	+2.876	+1.71	.0 +0.936	+0.394	+0.000	-0.297	-0.525	5 -0.706	-0.850	-0.968	-1.066		
.100	61.6	+3.066	+1.82	3 +0.998	+0.420	+0.000	-0.316	-0.560) -0.752	-0.907	-1.032	-1.136		
.200	63.0	+3.254	+1.93	4 +1.059	+0.446	+0.000	-0.336	-0.594	-0.798	-0.962	-1.095	-1.206		
. 300	64.2	+3.439	+2.04	15 +1.119	+0.472	+0.000	-0.355	-0.628	3 -0.844	-1.017	-1.158	-1.274		
. 400	65.4	+3.623	+2.15	54 +1.179	+0.497	+0.000	-0.374	-0.662	2 -0.889	-1.071	-1.220	-1.342		
. 500	66.4	+3.805	+2.26	52 +1.238	+0.522	+0.000	-0.392	-0.695	5 -0.933	-1.125	-1.281	-1.410		
.600	67.4	+3.985	+2.36	59 +1.297	+0.546	+0.000	-0.411	-0.728	3 -0.978	-1.178	-1.342	-1.477		
. 700	68.3	+4.165	+2.47	6 +1.355	+0.571	+0.000	-0.429	-0.761	1.022	-1.231	-1.402	-1.543		
. 800	69.1	+4.343	+2.58	82 +1.413	+0.596	+0.000	-0.448	-0.793	3 -1.065	-1.284	-1.462	-1.609		
.900	69.8	+4.520	+2.68	37 +1.471	+0.620	+0.000	-0.466	-0.826	5 -1.109	-1.336	-1.522	-1.675		
.000	70.5	+4.697	+2.79	2 +1.528	+0.644	+0.000	-0.484	-0.858	3 -1.152	-1.389	-1.581	-1.740		
.100	71.2	+4.873	+2.89	6 +1.585	+0.668	+0.000	-0.502	-0.890) -1.195	-1.441	-1.640	-1.805		
.200	71.8	+5.048	+3.00	1 +1.642	+0.692	+0.000	-0.520	-0.922	-1.238	-1.492	-1.699	-1.870		
. 300	72.4	+5.222	+3.10	4 +1.699	+0.716	+0.000	-0.538	-0.954	-1.281	-1.544	-1.758	-1.935		
. 400	72.9	+5.396	+3.20	18 +1.756	+0.740	+0.000	-0.556	-0.986	5 -1.324	-1.595	-1.817	-1.999		
. 500	73.4	+5.570	+3.31	.1 +1.812	+0.764	+0.000	-0.574	-1.017	-1.366	-1.647	-1.875	-2.064		
. 600	73.9	+5.743	+3.41	.4 +1.869	+0.787	+0.000	-0.592	-1.049	9 -1.409	-1.698	-1.933	-2.128		
. 700	74.3	+5.915	+3.51	.6 +1.925	+0.811	+0.000	-0.610	-1.080	0 -1.451	-1.749	-1.991	-2.192		
.800	74.7	+6.088	+3.61	.9 +1.981	+0.835	+0.000	-0.628	-1.112	2 -1.494	-1.800	-2.049	-2.255		

Output shows the difference between the reference wavelength zenith distance and that at each tabulated wavelength in seconds of arc.

1

Differential Atmospheric Dispersion

Differential Refraction Barnard's Star Astrometry in V *versus* R

Differential Atn	ospheric Dispersi	ion						
Atmospheric Para	meters erature [Celsius]	Wavelength Range	Ain [nm]	Airmass Range	nimum	Reference Wavelength		
40 Relative 1000 Pressu	ve Humidity as % ire [mbar]	555 Lambda f	Aax (nm) Step (nm)	3.9 Airmass Ma 0.100 Airmass Ste	ep	Compute Defau		
Sec2D 2D (de 1.300 39. 1.400 44. 1.500 48. 1.600 51. 1.700 54. 1.800 56. 1.900 58. 2.000 60. 2.100 61. 2.200 63. 2.300 64. 2.400 65. 2.500 66. 2.600 67. 2.700 68. 2.800 69. 3.000 70. 3.100 71. 3.200 71. 3.200 71. 3.200 72. 3.400 72. 3.400 72. 3.500 73. 3.600 73. 3.700 74. 3.800 74.	g) 545 547 7 $+0.010$ $+0.010$ 4 $+0.012$ $+0.010$ 2 $+0.013$ $+0.010$ 3 $+0.015$ $+0.010$ 3 $+0.016$ $+0.010$ 3 $+0.018$ $+0.010$ 4 $+0.021$ $+0.010$ 5 $+0.023$ $+0.010$ 4 $+0.025$ $+0.010$ 4 $+0.027$ $+0.010$ 4 $+0.027$ $+0.010$ 4 $+0.027$ $+0.010$ 4 $+0.023$ $+0.010$ 5 $+0.031$ $+0.020$ 6 $+0.033$ $+0.020$ 7 $+0.034$ $+0.020$ 9 $+0.035$ $+0.020$ 9 $+0.039$ $+0.020$ 9 $+0.039$ $+0.020$ 9 $+0.041$ $+0.020$ 9 $+0.043$ $+0.020$ 9 $+0.043$ $+0.020$ 9 $+0.043$ $+0.020$ 9 </th <th>46 547 548 07 +0.003 +0.000 08 +0.004 +0.000 09 +0.004 +0.000 10 +0.005 +0.000 11 +0.006 +0.000 12 +0.006 +0.000 13 +0.007 +0.000 14 +0.007 +0.000 15 +0.007 +0.000 16 +0.008 +0.000 17 +0.009 +0.000 18 +0.009 +0.000 20 +0.010 +0.000 21 +0.010 +0.000 22 +0.011 +0.000 23 +0.012 +0.000 24 +0.012 +0.000 28 +0.014 +0.000 29 +0.015 +0.000</th> <th>549 550 -0.003 -0.007 -0.004 -0.008 -0.005 -0.010 -0.006 -0.012 -0.007 -0.013 -0.007 -0.014 -0.007 -0.013 -0.007 -0.014 -0.007 -0.015 -0.008 -0.015 -0.009 -0.015 -0.009 -0.015 -0.010 -0.020 -0.011 -0.021 -0.011 -0.021 -0.011 -0.021 -0.012 -0.023 -0.014 -0.023 -0.014 -0.023 -0.014 -0.023</th> <th>551 552 -0.010 -0.013 -0.012 -0.015 -0.013 -0.018 -0.015 -0.020 -0.016 -0.022 -0.018 -0.023 -0.019 -0.027 -0.022 -0.021 -0.023 -0.021 -0.024 -0.029 -0.025 -0.031 -0.026 -0.034 -0.027 -0.036 -0.028 -0.038 -0.030 -0.039 -0.031 -0.041 -0.035 -0.043 -0.036 -0.044 -0.036 -0.044 -0.036 -0.045 -0.036 -0.048 TACTION -0.043</th> <th>553 55 -0.016 -0.01 -0.019 -0.02 -0.022 -0.02 -0.024 -0.02 -0.027 -0.03 -0.029 -0.03 -0.032 -0.03 -0.034 -0.04 -0.036 -0.04 -0.036 -0.04 -0.040 -0.04 -0.040 -0.04 -0.043 -0.05 -0.045 -0.05 -0.047 -0.05 -0.047 -0.05 -0.049 -0.05 -0.051 -0.06 -0.055 -0.06 -0.055 -0.06 -0.055 -0.06 -0.059 -0.07 WITH A -0.068 -0.08 -0.070 -0.08 -0.072 -0.08</th> <th>4 555 9 -0.023 3 -0.027 6 -0.030 9 -0.034 2 -0.037 5 -0.041 8 -0.044 0 -0.047 3 -0.050 6 -0.053 8 -0.056 1 -0.059 4 -0.062 6 -0.065 9 -0.068 1 -0.071 4 -0.071 4 -0.074 6 -0.077 9 -0.080 1 -0.083 VFILCE 1 -0.094 3 -0.097 6 -0.100</th> <th></th>	46 547 548 07 +0.003 +0.000 08 +0.004 +0.000 09 +0.004 +0.000 10 +0.005 +0.000 11 +0.006 +0.000 12 +0.006 +0.000 13 +0.007 +0.000 14 +0.007 +0.000 15 +0.007 +0.000 16 +0.008 +0.000 17 +0.009 +0.000 18 +0.009 +0.000 20 +0.010 +0.000 21 +0.010 +0.000 22 +0.011 +0.000 23 +0.012 +0.000 24 +0.012 +0.000 28 +0.014 +0.000 29 +0.015 +0.000	549 550 -0.003 -0.007 -0.004 -0.008 -0.005 -0.010 -0.006 -0.012 -0.007 -0.013 -0.007 -0.014 -0.007 -0.013 -0.007 -0.014 -0.007 -0.015 -0.008 -0.015 -0.009 -0.015 -0.009 -0.015 -0.010 -0.020 -0.011 -0.021 -0.011 -0.021 -0.011 -0.021 -0.012 -0.023 -0.014 -0.023 -0.014 -0.023 -0.014 -0.023	551 552 -0.010 -0.013 -0.012 -0.015 -0.013 -0.018 -0.015 -0.020 -0.016 -0.022 -0.018 -0.023 -0.019 -0.027 -0.022 -0.021 -0.023 -0.021 -0.024 -0.029 -0.025 -0.031 -0.026 -0.034 -0.027 -0.036 -0.028 -0.038 -0.030 -0.039 -0.031 -0.041 -0.035 -0.043 -0.036 -0.044 -0.036 -0.044 -0.036 -0.045 -0.036 -0.048 TACTION -0.043	553 55 -0.016 -0.01 -0.019 -0.02 -0.022 -0.02 -0.024 -0.02 -0.027 -0.03 -0.029 -0.03 -0.032 -0.03 -0.034 -0.04 -0.036 -0.04 -0.036 -0.04 -0.040 -0.04 -0.040 -0.04 -0.043 -0.05 -0.045 -0.05 -0.047 -0.05 -0.047 -0.05 -0.049 -0.05 -0.051 -0.06 -0.055 -0.06 -0.055 -0.06 -0.055 -0.06 -0.059 -0.07 WITH A -0.068 -0.08 -0.070 -0.08 -0.072 -0.08	4 555 9 -0.023 3 -0.027 6 -0.030 9 -0.034 2 -0.037 5 -0.041 8 -0.044 0 -0.047 3 -0.050 6 -0.053 8 -0.056 1 -0.059 4 -0.062 6 -0.065 9 -0.068 1 -0.071 4 -0.071 4 -0.074 6 -0.077 9 -0.080 1 -0.083 VFILCE 1 -0.094 3 -0.097 6 -0.100		
T		'veff	/ (v	′° eff		•	V	

Output shows the difference between the reference wavelength zenith distance and that at each tabulated wavelength in seconds of arc.

Does Image Calibration Matter?

- Do hot pixels affect astrometry?
- Always calibrate if possible, but...
 - Tested using 60 image sequence
 - Ran with and without dark subtraction
 - Compared coordinates
 - Compared astrometric residuals

Calibrated versus Non-Calibrated Astrometric Residuals

Calibrated versus Non-Calibrated Astrometric Right Ascension

Calibrated

Calibrated versus Non-Calibrated Astrometric Declination

Star Image Centroid Error

What is the error distribution of centroids?

- Collection of pixels > threshold ADU value

How does the error depend on brightness?

- Expectation: Dim star \rightarrow larger σ ?
- What is the faintest useful reference star?
- Centroids measured differentially w.r.t. Barnard's Star

R1 (*i.e.*, ref star 1) m_v=11.45

R1 XY Scatter

R1 X Histogram

R1 Y Histogram

R10 m_v=13.55

R10 X Histogram

F1 (*i.e.*, faint star 1) m_v=15.4

F1 XY Scatter

F1 X Histogram

F4 m_v=16.6

F4 XY Scatter

F4 X Histogram

F4 Y Histogram

Total ADUs vs Centroid Error

SNR vs Centroid Error

Magnitude vs Centroid Error

Astrometric Solution

Key idea:

- Always use same set of reference stars
- Astrometric solution always "the same"
- Centroid errors will alter residuals
- Residuals will cluster around mean value
- Distribution will be normal distribution

2010-09-25 Astrometric Residuals

Distribution of Residuals

2010 Astrometric Residuals

Astrometric Position

Key idea:

- Astrometric solution always "the same"
- Positions tend toward a mean value
- Distribution will be normal distribution

Tests:

- Measure sets of 60 images
- Compute standard deviation of position
 Standard error = σ/√N

Astrometric Data Report

	A	В	С	D	E	F	G	Н	Î	J	K	L	M
1	AIP4Wir	n v2.3.33 Magnitud	e Measureme	ent Tool									
2	Astrome	tric Coordinates in	Text Format										
3	Reference	ce stars = 11											
4	Now = 10/8/2010 9:48:31 PM												
5	Seq#	Julian Day	Focal[mm]	PA[d.d]	X[pix]	Y[pix]	RA[d.d]	Dec[d.d]	RArms	DCrms	HH MM SS.ss	+DD MM SS.s	FileName
6	0	2455465.4719	911.0738	174.8909	1109.1150	724.255	269.449540	4.724217	0.145	0.092	17 57 47.89	+04 43 27.2	Barnstar-001-V60s.fit
7	1	2455465.4729	911.1903	174.9034	1110.3390	725.270	269.449559	4.724245	0.137	0.086	17 57 47.89	+04 43 27.3	Barnstar-002-V60s.fit
8	2	2455465.4738	911.0766	174.8860	1110.7570	725.883	269.449519	4.724284	0.118	0.048	17 57 47.88	+04 43 27.4	Barnstar-003-V60s.fit
9	3	2455465.4748	911.1803	174.8925	1111.6590	726.666	269.449526	4.724268	0.160	0.072	17 57 47.89	+04 43 27.4	Barnstar-004-V60s.fit
10	4	2455465.4758	911.2407	174.8792	1112.4750	726.338	269.449534	4.724249	0.101	0.083	17 57 47.89	+04 43 27.3	Barnstar-005-V60s.fit
11	5	2455465.4767	910.8706	174.8941	1113.0990	726.950	269.449537	4.724278	0.149	0.112	17 57 47.89	+04 43 27.4	Barnstar-006-V60s.fit
12	6	2455465.4777	910.8468	174.8869	1113.2640	726.589	269.449533	4.724270	0.144	0.086	17 57 47.89	+04 43 27.4	Barnstar-007-V60s.fit
13	7	2455465.4787	910.9625	174.8899	1114.2280	726.405	269.449547	4.724234	0.108	0.100	17 57 47.89	+04 43 27.2	Barnstar-008-V60s.fit
14	8	2455465.4796	920.5098	173.9535	1114.7880	726.566	269.449874	4.724502	4.913	3.134	17 57 47.97	+04 43 28.2	Barnstar-009-V60s.fit
15	9	2455465.4806	911.0141	174.8864	1115.2200	726.386	269.449559	4.724228	0.077	0.081	17 57 47.89	+04 43 27.2	Barnstar-010-V60s.fit
16	10	2455465.4816	911.1652	174.8776	1115.4930	726.321	269.449523	4.724258	0.154	0.109	17 57 47.89	+04 43 27.3	Barnstar-011-V60s.fit
17	11	2455465.4825	911.1594	174.8983	1115.6550	726.408	269.449525	4.724241	0.135	0.082	17 57 47.89	+04 43 27.3	Barnstar-012-V60s.fit
18	12	2455465.4835	910.9489	174.8854	1115.9300	726.182	269.449530	4.724245	0.108	0.112	17 57 47.89	+04 43 27.3	Barnstar-013-V60s.fit
19	13	2455465.4845	910.8863	174.8830	1116.3670	726.080	269.449521	4.724284	0.119	0.098	17 57 47.89	+04 43 27.4	Barnstar-014-V60s.fit
20	14	2455465.4855	910.8912	174.8717	1116.3460	725.982	269.449526	4.724279	0.160	0.087	17 57 47.89	+04 43 27.4	Barnstar-015-V60s.fit
21	15	2455465.4864	911.0373	174.8802	1116.6080	726.036	269.449510	4.724277	0.099	0.109	17 57 47.88	+04 43 27.4	Barnstar-016-V60s.fit
22	16	2455465.4874	911.0205	174.8933	1116.8730	725.895	269.449500	4.724265	0.143	0.093	17 57 47.88	+04 43 27.4	Barnstar-017-V60s.fit
23	17	2455465.4884	911.1496	174.8793	1117.4670	725.950	269.449506	4.724290	0.134	0.025	17 57 47.88	+04 43 27.4	Barnstar-018-V60s.fit
24	18	2455465.4893	910.9007	174.8687	1117.2820	726.238	269.449525	4.724272	0.152	0.100	17 57 47.89	+04 43 27.4	Barnstar-019-V60s.fit
25	19	2455465.4903	911.0019	174.8688	1117.9900	726.291	269.449579	4.724262	0.130	0.037	17 57 47.90	+04 43 27.3	Barnstar-020-V60s.fit
26	20	2455465.4913	911.3158	174.8904	1117.8650	726.206	269.449553	4.724259	0.138	0.091	17 57 47.89	+04 43 27.3	Barnstar-021-V60s.fit
27	21	2455465.4922	910.8112	174.8790	1118.2040	726.087	269.449518	4.724286	0.152	0.093	17 57 47.88	+04 43 27.4	Barnstar-022-V60s.fit
28	22	2455465.4932	910.9561	174.8623	1118.4220	725.857	269.449516	4.724302	0.115	0.085	17 57 47.88	+04 43 27.5	Barnstar-023-V60s.fit
29	23	2455465.4942	911.1515	174.8843	1118.6280	725.246	269.449493	4.724287	0.151	0.097	17 57 47.88	+04 43 27.4	Barnstar-024-V60s.fit
30	24	2455465.4951	910.7821	174.8772	1119.1060	725.354	269.449541	4.724247	0.136	0.089	17 57 47.89	+04 43 27.3	Barnstar-025-V60s.fit
31	25	2455465.4961	910.8367	174.8403	1119.3980	725.095	269.449498	4.724294	0.142	0.089	17 57 47.88	+04 43 27.5	Barnstar-026-V60s.fit
32	26	2455465.4971	910.9794	174.8579	1119.2390	725.054	269.449512	4.724298	0.132	0.091	17 57 47.88	+04 43 27.5	Barnstar-027-V60s.fit
33	27	2455465.4980	911.0343	174.8766	1119.6120	724.681	269.449508	4.724280	0.100	0.076	17 57 47.88	+04 43 27.4	Barnstar-028-V60s.fit
34	28	2455465.4990	911.1055	174.9062	1120.0520	724.224	269.449503	4.724268	0.144	0.070	17 57 47.88	+04 43 27.4	Barnstar-029-V60s.fit
35	29	2455465.5000	911.0400	174.8752	1120.6640	724.107	269.449534	4.724269	0.141	0.114	17 57 47.89	+04 43 27.4	Barnstar-030-V60s.fit
36	30	2455465.5009	911.1117	174.8649	1120.3910	724.219	269.449534	4.724270	0.151	0.071	17 57 47.89	+04 43 27.4	Barnstar-031-V60s.fit
37	31	2455465.5019	910.9768	174.8785	1121.4030	724.389	269.449531	4.724254	0.094	0.121	17 57 47.89	+04 43 27.3	Barnstar-032-V60s.fit
38	32	2455465.5029	910.8195	174.8627	1121.0790	724.098	269.449534	4.724268	0.173	0.134	17 57 47.89	+04 43 27.4	Barnstar-033-V60s.fit
39	33	2455465.5038	910.9042	174.8599	1121.6070	723.931	269.449509	4.724293	0.136	0.089	17 57 47.88	+04 43 27.5	Barnstar-034-V60s.fit
40	34	2455465.5048	911.0821	174.8755	1121.8740	723.437	269.449559	4.724231	0.117	0.088	17 57 47.89	+04 43 27.2	Barnstar-035-V60s.fit

Barnard's Star 2010-09-25

Results for Barnard's Star

Barnard's Star													
Mean Positions and Standard Errors for 20 Nights in 2009-2010													
Date	JD	RA	Dec	RAste	Decste	N							
2009-06-27	2455010.81407	269.44994707	4.72076871	0.00000388	0.00000576	14.00							
2009-07-16	2455028.80895	269.44987810	4.72090612	0.00000165	0.00000165	41.00							
2009-07-17	2455030.80288	269.44989435	4.72092106	0.00000354	0.00000189	31.00							
2009-07-24	2455037.76499	269.44984252	4.72096489	0.00000846	0.00000717	27.00							
2009-08-16	2455060.70775	269.44980920	4.72112190	0.00000819	0.00000548	20.00							
2009-08-23	2455067.71629	269.44978710	4.72116720	0.00000521	0.00000493	40.00							
2009-09-10	2455085.65938	269.44975914	4.72129771	0.00000478	0.00000506	35.00							
2009-09-25	2455100.68891	269.44975095	4.72138550	0.00000908	0.00000780	20.00							
2009-10-06	2455111.61915	269.44973775	4.72147455	0.00000709	0.00000671	20.00							
2009-11-01	2455137.60667	269.44975657	4.72163799	0.00000473	0.00000389	92.00							
2009-11-24	2455160.57452	269.44977870	4.72180378	0.00000514	0.00000480	40.00							
2010-02-20	2455249.06188	269.44995185	4.72252358	0.00000398	0.00000548	40.00							
2010-06-07	2455355.80518	269.44978542	4.72349878	0.00000340	0.00000284	36.00							
2010-07-03	2455381.78179	269.44969725	4.72369041	0.00000509	0.00000338	32.00							
2010-07-05	2455383.75921	269.44969846	4.72370029	0.00000373	0.00000283	59.00							
2010-08-15	2455424.72041	269.44958083	4.72399322	0.00000255	0.00000224	58.00							
2010-09-12	2455452.55843	269.44952409	4.72418109	0.00000331	0.00000235	58.00							
2010-09-24	2455464.52788	269.44952317	4.72426181	0.00000293	0.00000242	58.00							
2010-09-25	2455465.50082	269.44952351	4.72426698	0.00000279	0.00000255	59.00							
2010-10-19	2455489.64844	269.44952582	4.72441151	0.00000261	0.00000335	57.00							

Coordinates of Barnard's Star

Model Parameters

 $\alpha_{now} = \alpha_{J2000.0} + \alpha_{PM}(Y_{now} - 2000) + \pi P_{\alpha}$ $\delta_{now} = \delta_{J2000.0} + \delta_{PM}(Y_{now} - 2000) + \pi P_{\delta}$

(α, δ)_{now} = current coordinates
(α, δ)_{J2000.0} = coordinates in J2000.0
α_{PM} = annual proper motion in RA
δ_{PM} = annual proper motion in Dec
π = parallax of the star
P_α = parallax factor in α for time Y_{now}
P_δ = parallax factor in δ for time Y_{now}

💐 Trigonometric Parallax and Proper Motion

Trigonometric Parallax and Proper Motion

💐 Trigonometric Parallax and Proper Motion

Capability of Small-Telescope Astrometry

Given:

- CCD camera with 6.4 μm pixels
- Telescope focal length ~1,000 mm
- Large number of good reference stars
- Maximum non-saturating exposure time
- Observation consisting of multiple images

Possible to:

- Routinely achieve 0.020 arcsecond precision.
- Sometimes achieve 0.010 arcsecond precision.

The Trigonometric Parallax and Proper Motion of Barnard's Star

Error and Precision in Small-Telescope Astrometry

Richard Berry