The Cal Poly 18

Approaching Operational Status

Portland VI Workshop July 27, 2012 Richard Berry

Cal Poly 18: Capsule Description

 Economical research-grade telescope • 0.47-meter aperture, f/4.1 Newtonian Alt-azimuth configuration Compact, symmetrical, inexpensive Ever-changing drive rate in three axes Computer-controlled motors Alt-az direct-drive: no gears, rapid response Feedback from high-resolution encoders

Cal Poly 18: Timeline

• 2007: Portland I Conference.

- Dave Rowe direct drive motor prototype.
- Dan Gray demos "Lollipop" alt-az telescope.
- 2008: Cal Poly student assignment.
 - Design/construct fork and tube.
 - Debut at STAR Conf., San Luis Obispo.
- 2009: Cal Poly 18 moves to TMS.
- 2011: Press begins to make operational.
- 2012: Regular "engineering" operations begin.

The PDX I Meeting

Genet, Banich, Berry, Bartels, Gray, and "Lollipop"

Prototype Direct-Drive Motor

The plywood prototype direct-drive motor

5,000 Images of XX Cygni in four nights!

Direct-Drive Configuration

Credit: Dave Rowe

24 Handmade Coils

Bearing Race

Credit: Dave Rowe

32 Rare-Earth Magnets

Magnets

Soft Steel Annulus

Aluminum Housing

Encoder Mounting Area

Bearing Race and balls

Credit: Dave Rowe

The Cal-Poly Design Team

Matt Swanson, Josh Schmitt, Michelle Kirkup, and absent Wilson Chiu and John Ridgely, advisor, Dept. of Mechanical Engineering

Fused Sandwich Mirror

Tong Liu, Hubble Optics

Fused Borosilicate Secondary

Cary Chelborad and Alan Keller, Optical Structures

2009 Status: Functioning Prototype

- Moved to TMS in Portland, OR.
- Azimuth base fabricated.
 - Six steel channel legs with adjustable feet.
- Altitude bearing/motor installed.
 - Axes not perpendicular, shimmed and epoxied.
- Mirror cell and secondary assembly completed.
- Slews/tracks under computer control both axes.
 - Slew rates to 30°/second; tracks at sidereal rate.
 - "Functional" as a telescope but untested.

2011 Status: Still a Prototype

• Minimum needed for science data collection:

- Add limit/home switches.
- Complete firmware/software.
- Boards, wiring, Ethernet extender.
- Replace unstable spider/upper end.
- Optics: baffle, blacken, focus.
- Design/build camera focuser/rotator.
- Dedicated control computer.
- CCD camera and filter wheel.
- Site/shelter for dark-sky testing.
- Iterate until working:
 - Operate, evaluate, correct, repeat.

2012: Still Debugging

Adequate for science data collection:

- Has site/shelter suitable for dark-sky testing.
- Powers up reliably.
- Points reliably.
- Pointing models work reliably.
- Baffled against stray light.
- Identified and significant problems:
 - Poor quality star images (always \geq 3.5 arcsec).
 - Software bug in camera rotation routines.
 - Unexpected focuser/rotator resets to zero.
 - Mirror may be moving in mirror cell.

April 2011

The Cal Poly 18 at Technical Marine Services

Testing in TMS Parking Lot

First Light

Cal Poly 18 First Light: TMS 2011-06-16

18

January 11, 2012: Everything Works!

Cal Poly 18 with temporary paper light shroud; cold, windy night

July 2012: Slewing Around

Video removed to reduce file size.

Settling After a Slew

In the video, the Cal Poly "bounces" • Manual slew \rightarrow no warning when to stop • Computer slew \rightarrow decelerates to postion How fast does the Cal Poly settle? Made video of star slewing into field Star approaches, bounces once, settles Settling time approximately 2 seconds

Settling After a Slew

Video removed to reduce file size.

- Images never smaller than ~3.5 arcsec
 - With bad seeing, considerably larger
 - With bad tracking, considerably larger
 - With short exposures, always ≥3.5 arcsec
- Image quality worse when cooling
 - Afternoon ~22 C, midnight ~7 C
 - In-focus images show strong asymmetry
 - Mirror appears warped or deformed

Through-Focus Images as Mirror is Cooling

Through-Focus Images with Cooled Mirror

Testing the Primary Mirror

Prime Focus in the Telescope

- Standard configuration
- Includes secondary aberrations
- Minimal access to the mirror cell
- Foucault Test
 - Too much aberration to visualize deformation
- Optical Bench at Prime Focus
 - Artificial star at 120 feet (but spherical aberration)
 - Video camera at focus point
 - Long path at ground level
 - Easy access to mirror cell and mirror adjustments

Star Image Video

Video removed to reduce file size.

Cal Poly 18 Mirror Handling Fixture

0

Artificial Star (very bright!)

Shadow of focuser on the mirror

Focuser on camera tripod (with laser alignment tool)

Laser Beam aligned on the Mirror Spot

0

Test Setup (from vantage of artificial star)

Test Setup (flash photo)

E-B

Ð

-

Testing the Primary Mirror

Video removed to reduce file size.

Testing the Primary Mirror

- Fairly quick/easy to align optics
- No obvious asymmetric deformation
- Observer air currents cause problems
- Need to quantify scale and focus shift
- Still a "work-in-progress"
- Important: Primary may be okay....
- Important: So, test the secondary!

Cal Poly 18: Status

- Became "operational" December 2011.
- Able to operate "routinely" by April 2012.
- Attained performance level:
 - All-sky models to ≤ 10 arcsec r.m.s.
 - Acquires desired field/object reliably.
 - Tracks to ~0.5 arcsec for 15 minutes.
 - Resists reasonably large wind forces.
 - Focuser/rotator corrects field rotation.
- Much performance testing remains.

Thanks to...

- Russ Genet
- Dave Rowe
- Dan Gray
- Howard Banich
- John Ridgely
- John Keller
- Tong Lui
- Cary Chelborad
- Allan Keller
- Mel Bartels

- Greg Rohde
- Ed Harvey
- Billy Alberson
- Wilson Chiu
- Michelle Kirkup
- Drew Murphy
- Josh Schmitt
- Matt Swanson
- Rob Urban
- and many others.

Cal Poly Bulletins...

Follow the Cal Poly 18 at:

www.wvi.com/~rberry

...and click on the Cal Poly Bulletins link.

Portland VI Workshop July 27, 2012 Richard Berry