The Cal Poly 18

An 0.47m Direct-Drive Robotic Telescope

Meter-Class Astronomy January 20, 2012 Richard Berry

Cal Poly 18: Capsule Description

 Economical research-grade telescope • 0.47-meter aperture, f/4.1 Newtonian Alt-azimuth configuration Compact, symmetrical, inexpensive Ever-changing drive rate in three axes Computer-controlled motors Alt-az direct-drive: no gears, rapid response Feedback from high-resolution encoders

Cal Poly 18: Timeline

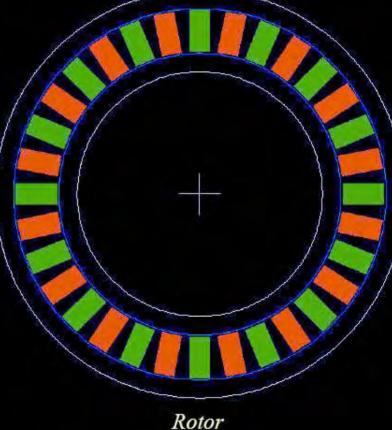
2007: Portland I Conference. Dave Rowe direct drive motor prototype. Dan Gray demos "Lollipop" alt-az telescope. 2008: Cal Poly student assignment. Design/construct fork and tube. Debut at STAR Conf., San Luis Obispo. 2009: Cal Poly 18 moves to TMS. 2011: Push begins to make operational.

The PDX I Meeting

Genet, Banich, Berry, Bartels, Gray, and "Lollipop"

Prototype Direct-Drive Motor

The plywood prototype direct-drive motor


What Convinced Me...

Direct-Drive Configuration

24 coils arranged in three phases

32 magnets on soft steel annulus

Stator

Credit: Dave Rowe

24 Handmade Coils

Bearing Race

Credit: Dave Rowe

32 Rare-Earth Magnets

Magnets Soft Steel Annulus Aluminum Housin

Encoder Mounting Area

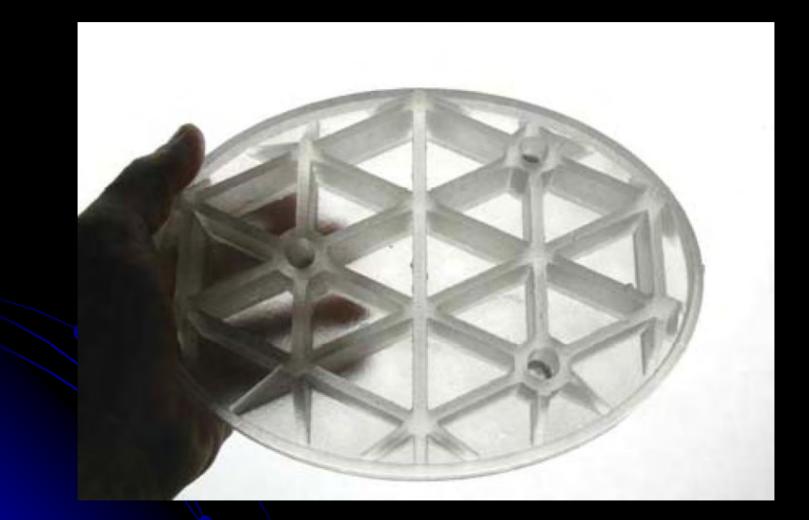
Bearing Race and balls

Credit: Dave Rowe

The Cal-Poly Design Team


Matt Swanson, Josh Schmitt, Michelle Kirkup, and absent Wilson Chiu and John Ridgely, advisor, Dept. of Mechanical Engineering

Debut: Cal Poly 18


Dan Gray (SciTech) with Cal Poly fork sitting on azimuth axis motor

Fused Sandwich Mirror

Tong Liu, Hubble Optics

Fused Borosilicate Secondary

Cary Chelborad and Alan Keller, Optical Structures

2009 Status: Functioning Prototype

- Moved to TMS in Portland, OR.
- Azimuth base fabricated.
 - Six steel channel legs with adjustable feet.
- Altitude bearing/motor installed.
 - Axes not perpendicular, shimmed and epoxied.
- Mirror cell and secondary assembly completed.
- Slews/tracks under computer control both axes.
 - Slew rates to 30% second; tracks at sidereal rate.
 - "Functional" as a telescope but untested.

2011 Status: Still a Prototype

• Minimum needed for science data collection:

- Add limit/home switches.
- Complete firmware/software.
- Boards, wiring, Ethernet extender.
- Replace unstable spider/upper end.
- Optics: baffle, blacken, focus.
- Design/build camera focuser/rotator.
- Dedicated control computer.
- CCD camera and filter wheel.
- Site/shelter for dark-sky testing.
- Iterate until working:
 - Operate, evaluate, correct, repeat.

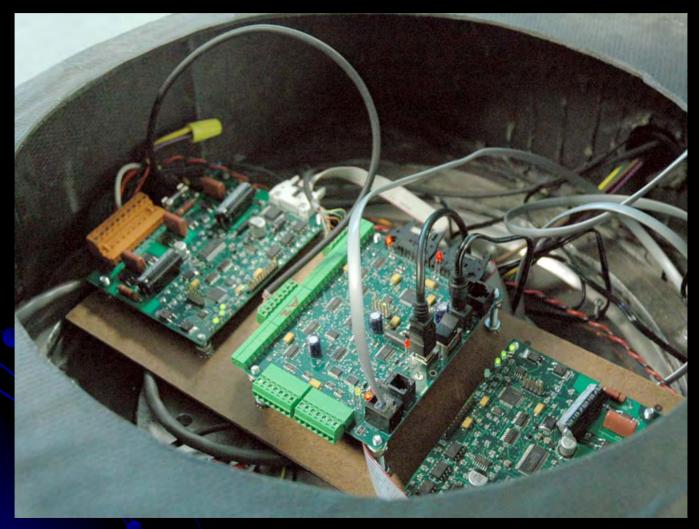
April 2011

The Cal Poly 18 at Technical Marine Services

The Altitude Axis Reworked

Altitude magnet ring →

← Epoxy filler


← Fiberglas fork

Side of optical tube \rightarrow

← Edge of altitude coil ring

Shims \rightarrow

Prototype Control Electronics

SciTech circuit boards in base of Cal Poly 18 fork assembly

Repair to Motor Coils

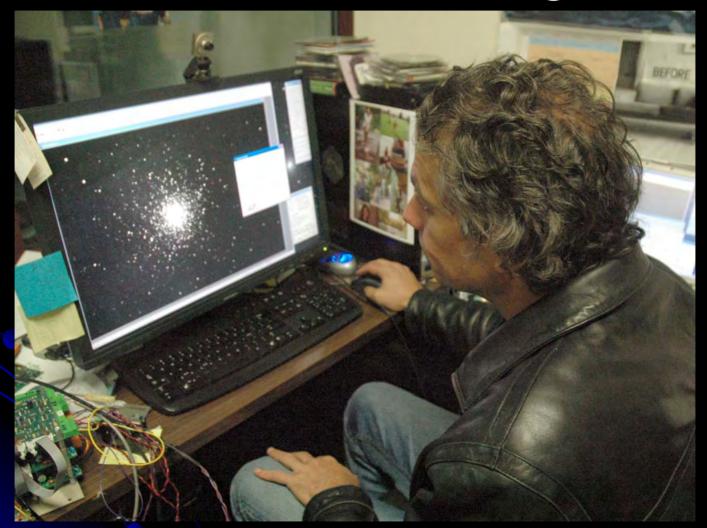
Seen from below, with telescope fork and tube lifted by fork-lift truck

19

Magnet Ring and Base

200 glass ball bearings run in V-groove.

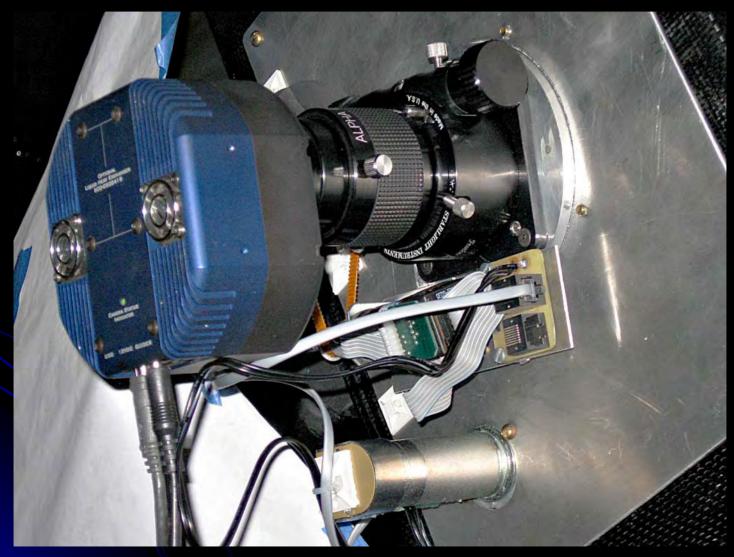
Dan Installs Azimuth Encoder



21

Testing in TMS Parking Lot

Dan Sees First Light


We mirrored the control laptop from Dan's office computer

First Light

Cal Poly 18 First Light: TMS 2011-06-16

24

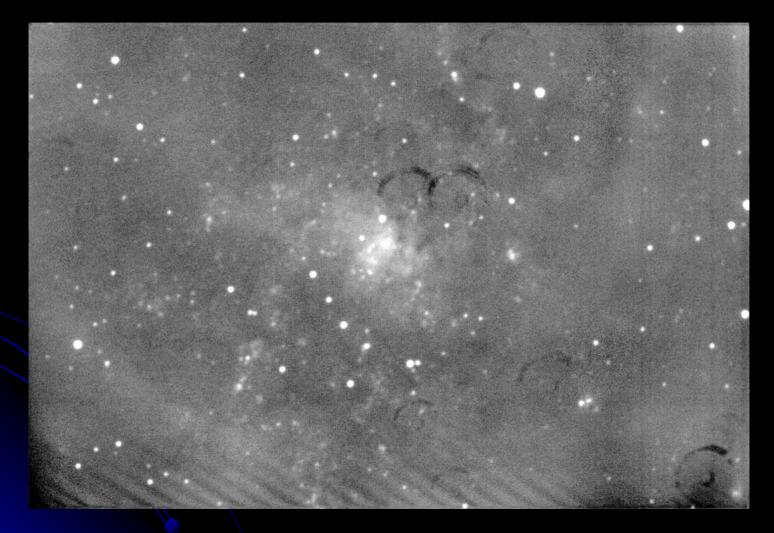
Last Major Component: the Focuser/Rotator

QSI 532 CCD camera, FeatherTouch focuser, TMS rotation stage

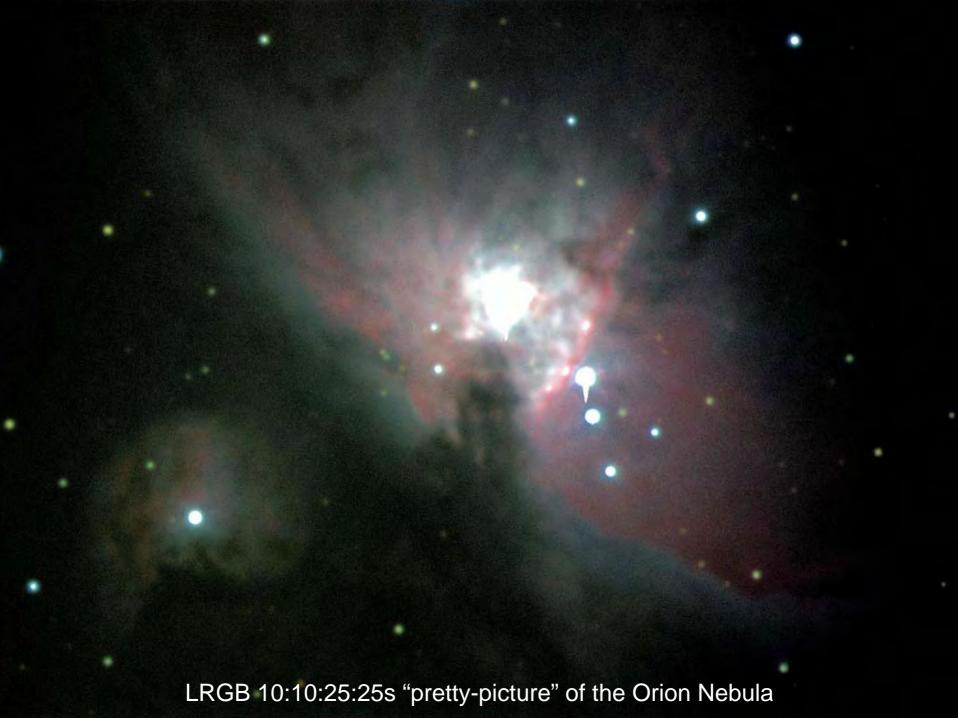
January 11, 2012: Everything Works!

Cal Poly 18 with temporary paper light shroud; cold, windy night

Find and Track Satellite


Unguided 60-second exposure while following stars

Find and Track Satellite



Unguided 60-second exposure while following satellite

Accurate Unguided Tracking

Five minute exposure, unguided, round stars!

Cal Poly 18: New Home

Temporary roll-off housing for convenient shake-down and testing in driveway near Richard Berry's house, Lyons, Oregon

31

For next time...

- Design telescope as complete system.
- Understand all requirements of system.
- Design subsystems as part of system.
- Avoid "We'll take care of it later" thinking.
- Test and assess for function in system.
- Make realistic cost projections.

Design as a Complete System

• Make optical function Job #1.

- Do not clip light path
- If open tube is necessary, baffle it.
- Keep heat sources away from optics.
- Tightly integrate motors, fork, and tube.
- Accommodate power and data cables.
 - Pierce bulkheads.
 - Design space for cabling.

Direct-Drive Motors

- Provide dirt covers for sensitive parts.
- Protect all wiring from abrasion.
 - Pot wires leading to coils.
 - Cover exposed wiring.
- Use full 360° encoder ring in azimuth.
- Integrate encoder and sensor in motor.
- Place min, max, home switches in motor.

Base, Fork, Tube

- Plan to accommodate off-spec optics.
- Integrate motor design into design.
- Integrate power and data cables in design.
 - Incorporate pass-through in bulkheads.
 - Design separate paths for power and data.
- Anticipate need for counterweights, etc.
 - Add extra mounting holes, all surfaces.
 - Allow clearance for add-on items.

Cal Poly 18: Conclusions

- Became "operational" December 2011.
- Satisfies basic performance criteria:
 - All-sky model good to ~10 arcsec r.m.s.
 - Acquires desired field/object reliably.
 - Tracks to ~1 arcsec for 5 minutes.
 - Resists reasonably large wind forces.
 - Focuser/rotator corrects field rotation.
- Bulk of performance testing remains.

Thanks to...

- Russ Genet
- Dave Rowe
- Dan Gray
- Howard Banich
- John Ridgely
- John Keller
- Tong Lui
- Cary Chelborad
- Allan Keller
- Mel Bartels

- Greg Rohde
- Ed Harvey
- Billy Alberson
- Wilson Chiu
- Michelle Kirkup
- Drew Murphy
- Josh Schmitt
- Matt Swanson
- Rob Urban
- and many others.

For more information...

Follow work on the Cal Poly 18 at:

www.wvi.com/~rberry/calpoly18/calpoly18.htm

Meter-Class Astronomy January 20, 2012 Richard Berry